Κοινοποίησε

Αξιολόγηση Χρήστη: 5 / 5

Αστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια ΕνεργάΑστέρια Ενεργά
 

Τυχαίες μεταβλητές, πυκνότητες πιθανότητας, κατανομές.

Χριστόδουλος Χατζηλιόντος

Κατανομή Bernoulli

Πυκνότητα Πιθανότητα Μέση Διακύμανση
p p q
Διάγραμμα πυκνότητας
Διάγραμμα πιθανότητας
  1. Για την τυχαία μεταβλητή Χ με πεδίο τιμών την τιμή 0 με πιθανότητα q=1-p και την τιμή 1 με πιθανότητα p, η Χ ακολουθεί την Κατανομή Bernoulli.

Διωνυμική κατανομή

Πυκνότητα Πιθανότητα Μέση Διακύμανση

n p n p q
Διάγραμμα πυκνότητας
File:Binomial distribution pmf.svg
Διάγραμμα πιθανότητας
File:Binomial distribution cdf.svg
  1. Αν X είναι ο αριθμός των επιτυχιών σε μια ακολουθία n δοκιμών Bernoulli, τότε η X ακολουθεί την διωνυμική κατανομή b(x;n,p).
  2. Για την ακολoυθία ανεξάρτητων τυχαίων μεταβλητών Bernoulli, X1 ,X2 ,..., Xn με παράμετρο p, η τυχαία μεταβλητή X = X1 + X2 +...+ Xn ακολουθεί την διωνυμική κατανομή b(x;n,p).

Αρνητική διωνυμική κατανομή - Κατανομή Pascal

Πυκνότητα Πιθανότητα Μέση Διακύμανση

Διάγραμμα πυκνότητας
File:Negbinomial.gif
Διάγραμμα πιθανότητας
  1. Αν X είναι ο αριθμός των αποτυχιών σε μια ακολουθία δοκιμών Bernoulli, μέχρι να εμφανιστούν r επιτυχίες, τότε η X ακολουθεί την κατανομή Pascal NB(x;r,p).
  2. Για την ακολoυθία ανεξάρτητων τυχαίων μεταβλητών, της γεωμετρικής κατανομής, X1 ,X2 ,..., Xn με παράμετρο p, η τυχαία μεταβλητή X = X1 + X2 +...+ Xn ακολουθεί την κατανομή Pascal NB(x;r,p).

Γεωμετρική κατανομή

Πυκνότητα Πιθανότητα Μέση Διακύμανση

Διάγραμμα πυκνότητας
File:Geometric pmf.svg
Διάγραμμα πιθανότητας
File:Geometric cdf.svg
  1. Για την διακριτή τυχαία μεταβλητή Χ, που αποτελεί τον αριθμό των αποτυχιών, με πιθανότητα 1-p, σε μια σειρά δοκιμών Bernoulli, πριν εμφανιστεί η πρώτη επιτυχία, η Χ ακολουθεί την γεωμετρική κατανομή G(x;p).

Υπεργεωμετρική κατανομή

Πυκνότητα Πιθανότητα Μέση Διακύμανση

Διάγραμμα πυκνότητας
File:HypergeometricPDF.png
Διάγραμμα πιθανότητας
File:HypergeometricCDF.png
  1. Η διακριτή τυχαία μεταβλητή Χ αυτής της παραγράφου, με n=1, 2, ..., N=1, 2, ..., m= 0, 1, 2, ...,N, x=0, 1, 2, ..., min(m,n), ακολουθεί την υπεργεωμετρική κατανομή h(x;N,n,m).
  2. Η διακριτή τυχαία μεταβλητή Χ της υπεργεωμετρικής κατανομής, με σταθερό x, n και p=m/N και για πολύ μεγάλο Ν, ακολουθεί ασυμπτωτικά την διωνυμική κατανομή b(x;n,p).

Κατανομή Poisson

Πυκνότητα Πιθανότητα Μέση Διακύμανση
{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}  ή  λ λ
Διάγραμμα πυκνότητας
File:Poisson pmf.svg
Διάγραμμα πιθανότητας
File:Poisson cdf.svg
  1. Αν X είναι ο αριθμός των επιτυχιών σε μια ακολουθία n δοκιμών Bernoulli, με n πολύ μεγάλο, p πολύ μικρό και σταθερό γινόμενο λ = n p, τότε η X ακολουθεί ασυμπτωτικά την κατανομή Poisson P(x;n,p).

Κανονική κατανομή

Πυκνότητα Πιθανότητα Μέση Διακύμανση
{\displaystyle f(x)={\tfrac {1}{\sqrt {2\pi \sigma ^{2}}}}\,e^{-(x-\mu )^{2}/2\sigma ^{2}}} {\displaystyle {\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)\right]} μ σ2
Διάγραμμα πυκνότητας

File:Normal Distribution PDF.svg

Διάγραμμα πιθανότητας
File:Normal Distribution CDF.svg

  1. Για την τυχαία μεταβλητή Χ, που ακολουθεί την κανονική κατανομή 𝛮(𝜇, 𝜎2), η τυχαία μεταβλητή 𝛶 = (𝛸−𝜇)/𝜎 ακολουθεί την κανονική κατανομή 𝛮(0, 1).
  2. Για τις 𝑋1 και 𝑋2 ανεξάρτητες τυχαίες μεταβλητές, που ακoλουθούν τις κανονικές κατανομές 𝛮(𝜇1, 𝜎12) και 𝛮(𝜇2, 𝜎22), αντίστοιχα, η τυχαία μεταβλητή 𝛧 = 𝑋1 ± 𝑋2 ακολουθεί την κανονική κατανομή 𝛮(𝜇1 ± 𝜇2, 𝜎12 + 𝜎22).
  3. Για το τυχαίο δείγμα X = (𝛸1, 𝛸2, … , 𝛸𝑛), από κανονική κατανομή 𝛮(𝜇, 𝜎2), η δειγματική μέση τιμή (δμτ) 𝛸 ακολουθεί την κανονική κατανομή 𝛮(𝜇, 𝜎2/n).
  4. Για το τυχαίο δείγμα X = (𝛸1, 𝛸2, … , 𝛸𝑛), από κατανομή Fischer 𝐹(𝑥), για την οποία ισχύει ότι 𝐸(𝑋𝑖) = 𝜇 και Var(𝑋𝑖) = 𝜎2 < ∞, η τυχαία μεταβλητή (𝛸−𝜇) / (𝜎/√𝑛) συγκλίνει κατά νόμο στην τυπική κανονική κατανομή, που σημαίνει ότι, για αρκούντος μεγάλο 𝑛 ( 𝑛 ≥ 30 ), ακολουθεί την τυπική κανονική κατανομή 𝛮(0,1).
  5. Για τα ανεξάρτητα τυχαία δείγματα X = (𝛸1, 𝛸2, … , 𝛸𝑛) και Y = (Y1, Y2, … , Ym), από κανονική κατανομή 𝛮(𝜇1, 𝜎12) και 𝛮(𝜇2, 𝜎22), αντίστοιχα, η τυχαία μεταβλητή (δμτ 𝑋 − δμτ 𝑌) ακολουθεί την κανονική κατανομή 𝛮(𝜇 = 𝜇1 − 𝜇2, 𝜎= (𝜎12/n) + (𝜎22/m) ).

    Κατανομή Student

    Πυκνότητα Πιθανότητα Μέση Διακύμανση
    0
    Διάγραμμα πυκνότητας
    File:Student t pdf.svg
    Διάγραμμα πιθανότητας
    File:Student t cdf.svg

    1. Για τις ανεξάρτητες τυχαίες μεταβλητές 𝑋1 και 𝑋2, όπου 𝑋1 ακολουθεί την κανονική κατανομή 𝛮(0,1) και η 𝑋2 ακoλουθεί την κατανομή Chi Square 𝓧𝑛2, η τυχαία μεταβλητή 𝑌 = 𝑋1 / √(𝑋2/𝑛) ακολουθεί την κατανομή Student 𝑡𝑛.
    2. Για το τυχαίο δείγμα X = (𝛸1, 𝛸2, … , 𝛸𝑛), από την κανονική κατανομή 𝛮(𝜇, 𝜎2), οι τυχαίες μεταβλητές δμτ 𝛸 και 𝑆2 είναι ανεξάρτητες και η τυχαία μεταβλητή (δμτ 𝛸−𝜇) / (𝜎/√𝑛) ακολουθεί την κατανομή Student 𝑡𝑛-1.
    3. Για τα ανεξάρτητα τυχαία δείγματα X = (𝛸1, 𝛸2, … , 𝛸𝑛) και Y = (Y1, Y2, … , Ym), από κανονική κατανομή 𝛮(𝜇1, 𝜎12) και 𝛮(𝜇2, 𝜎22), με δειγματική μέση τιμή X και Y, με δειγματική διασπορά 𝑆12 και 𝑆22αντίστοιχα, η [(δμτ Χ - δμτ Υ) - (μ1 - μ2)] / S, όπου S = √[(n-1)S12+(m-1)S22] √[n+m] / √[n+m-2] √[nm] , ακολουθεί την κατανομή Student 𝑡𝑛+m-2.

    Κατανομή Fischer

    Πυκνότητα Πιθανότητα Μέση Διακύμανση

    Διάγραμμα πυκνότητας
    File:F-distribution pdf.svg
    Διάγραμμα πιθανότητας
    File:F dist cdf.svg

    1. Για τις ανεξάρτητες τυχαίες μεταβλητές 𝛸1 και 𝛸2που ακολουθούν τις κατανομές Chi Square 𝓧2𝑛1 και 𝓧2𝑛2, αντίστοιχα, η τυχαία μεταβλητή 𝑌 = (𝑋1/𝑛1) / (𝑋2/𝑛2) ακολουθεί την κατανομή Fischer 𝐹(𝑛1, 𝑛2).
    2. Για τα ανεξάρτητα τυχαία δείγματα X = (𝛸1, 𝛸2, … , 𝛸𝑛) και Y = (Y1, Y2, … , Ym), από κανονική κατανομή 𝛮(𝜇1, 𝜎12) και 𝛮(𝜇2, 𝜎22), με δειγματική διασπορά 𝑆12 και 𝑆22, αντίστοιχα, η (𝑆12/𝜎12) ⁄ (𝑆22/𝜎22) ακολουθεί την κατανομή Fischer 𝐹(𝑛−1, 𝑚 −1).

    Κατανομή Chi Square

    Πυκνότητα Πιθανότητα Μέση Διακύμανση
    k 2k
    Διάγραμμα πυκνότητας
    File:Chi-square pdf.svg
    Διάγραμμα πιθανότητας
    File:Chi-square cdf.svg

    1. Για τις ανεξάρτητες τυχαίες μεταβλητές 𝛸1, 𝛸2, … , 𝛸𝑛, που ακολουθούν την κανονική κατανομή 𝛮(0,1), η καθεμία, η τυχαία μεταβλητή 𝑌 = ∑ 𝑋𝑖2 ακολουθεί την κατανομή Chi Square 𝓧2𝑛.
    2. Για τις ανεξάρτητες τυχαίες μεταβλητές 𝛸1, 𝛸2, … , 𝛸𝑘, που ακολουθούν τις κατανομές Chi Square 𝓧2𝑛𝑖, 𝑖 = 1,2, … , 𝑘, αντίστοιχα, η τυχαία μεταβλητή 𝑌 = ∑ 𝑋2𝑖 ακολουθεί την κατανομή Chi Square 𝓧2𝑛, όπου 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 .
    3. Για τις ανεξάρτητες τυχαίες μεταβλητές 𝛸1 και 𝛸2, που ακoλουθούν η 𝑋1 την κατανομή Chi Square 𝓧2𝑛1 και η 𝑋1 + 𝑋2 την κατανομή Chi Square 𝓧2𝑛, με 𝑛 > 𝑛1, η 𝑋2 ακολουθεί την κατανομή Chi Square 𝓧2𝑛−𝑛1 .
    4. Για το τυχαίο δείγμα X = (𝛸1, 𝛸2, … , 𝛸𝑛), από την κανονική κατανομή 𝛮(𝜇, 𝜎2), οι τυχαίες μεταβλητές δμτ 𝛸 και 𝑆2 είναι ανεξάρτητες και η τυχαία μεταβλητή (𝑛−1) 𝑆2 / 𝜎2 ακολουθεί την κατανομή Chi Square 𝓧2𝑛−1.

    .

    Διάβασε επίσης:

     

    Η Kemioteko Engineering δημιουργήθηκε ως απόσταγμα εμπειριών 14 ετών στην αδειοδότηση, κατασκευή και λειτουργία δημόσιων τεχνικών έργων και 6 ετών στο ελεύθερο επάγγελμα του μελετητή μηχανικού με εξειδίκευση στην αδειοδότηση και λειτουργία επιχειρήσεων. Αποστολή της Kemioteko Engineering - Χατζηλιόντος Ι. Χριστόδουλος είναι η δημιουργία πελατών, οπαδών της, βαθειά ικανοποιημένων, που θέλουν να κάνουν διαχρονικά τα σωστά πράγματα με τους κατάλληλους συνεργάτες.

     

    Dipl. Chemical Engineer - Msc Environmental Design of Infrastructure Works
    Accommodations Internal Auditor - TUV Austria RCN 6035/2016
    ISO 9001 Internal Auditor - TUV Austria RCN 6065/2016
    ISO 45001 Internal Auditor - Alison 1412-13849119
    GDPR Internal Auditor - Alison 1401-13849119
    YPEN/ENEP. - No 16109 | YPEN/ENEL - No 553
    YPEXODE - No 26837 - MELETES 18-A & 27-A
    TEE - No 83488 | SEPE 330512/2017
    GGET - No 14856/95711/08-06-17
    YPEN / EL. DOM. - No 4517
    Contact: tel +302399-022359, fax +302371-200937
    Pitsouli 1, TK 63080, Nea Kallikrateia, Chalkidiki, Greece | http://kemioteko.gr
    Entrepreneurial & Environmental Facilities Consultant Services:
    Design, License, Quality Control & Construction Management,
    Instrumentation & Control, Operation & Maintenance
    Follow us 
     facebook  twitter  linkedin  googleplus  pinterest  youtube  twitter